

L Series

Electromechanical Material Testing Machine

The Tinius Olsen L Series of mechanical testing systems provide the simplicity, performance and affordability needed for quality control and product testing.

L Series

The L Series of electromechanical testing machines from Tinius Olsen is designed to test a wide range of materials including, but not limited to: plastics, films, paper, packaging materials, filter material, adhesives, foils, food, toys, medical devices and components, in tension, compression, flexure and peel.

Testing machines are available in frame capacities of 5kN, 10kN, 25kN and 50kN and are combined with a variety of grips and fixtures, extensometers and software to provide standard testing systems for a variety of applications.

At the heart of each system is the testing machine. Building on the quality and technology that is built into all Tinius Olsen machines, we have developed the L Series of machines that communicate directly with a standard PC via a high speed USB.

Robust construction of the loadframes comprising oil soaked pre loaded precision leadscrews, high precision ball race bearings, high grade material for crossheads and current electronics, combined with our years of experience in machine construction results in these superior testing machines.

Flexibility and simplicity of use is also built into the design of these machines. Each machine features rapid change Z beam loadcells that allow quick and easy capacity reduction to an appropriate capacity for the test. These loadcells have a measurement accuracy of +/- 0.5% of the applied load, from 2-100% of the loadcell capacity. Each machine also features rapid grip change capability: a simple pinning technique means that the gripping fixtures can be changed for different test configurations extremely rapidly and easily.

Accessory connectivity

Up to a maximum of four connections can be made with the test frame via a built-in accessory connection panel on the machine.

Extensometers

Full complement of video, automatic, encoder, laser, strain gage and LVDT extensometers are available for the determination of specimen strain.

Key Features

- USB connectivity
- Sunken power connector to ease service
- Protective screen supporting panels on the sides
- Air piped inside the machines to bottom and upper crossheads for supporting pneumatic fixtures
- Suitable for tension, compression, flexure, shear and other tests to a maximum force of 50kN(11,000lbf)
- Primary system interface is a PC running Tinius Olsen's Horizon data analysis software connected via USB
- System features local Jog up, jog down and stop buttons so the crosshead can be positioned for easy specimen loading
- Meets or exceeds the requirements of national and international standard for materials testing systems

Specifications

MODELS		5kL	10kL	25kL	50kL
Capacity	kN	5	10	25	50
	lbf	1000	2000	5000	11,000
Test speed range	mm/min	0.001-1000 up to 2500N, 0.001-500 up to 5kN	0.001-1000	0.001-1000	0.001-500
	in/min	0.00004-40 up to 500lb 0.00004-20 up to 1,000lb	0.00004-40	0.00004-40	0.00004-20
Clearance between columns	mm	n/a	410	410	410
	in	n/a	16	16	16
Throat depth	mm	115	n/a	n/a	n/a
	in	4.5	n/a	n/a	n/a
Max crosshead travel	mm	730	1095	1095	1068
	in	29	43	43	42
Dimensions (HxWxD)	mm	1140 x 490 x 450	1575 x 650 x 450	1575 x 650 x 450	1610 x 720 x 500
	in	45 x 19 x 18	62 x 26 x 18	62 x 26 x 18	63.4 × 28 × 20
Weight	kg	60	130	130	190
	lb	132	287	287	419

NOTES :

• Load weighing system meets or exceeds the requirements of the following standards: ASTM E4, ISO 7500-1 and EN 10002-2. Tinius Olsen recommends that systems are verified at installation in accordance with ASTM E4 and ASTM 75001

 Strain measurement system meets or exceeds the requirements of the following standards : ASTM E83, ISO 9513 and EN 10002-4

• Specifications are subject to change without notice.

Options and Accessories

- Grips and fixtures can be easily mounted securely with a locking pin, which also allows simple and rapid changes
- Precision extensometers and deflectometers are available using encoder, strain gauge and/or LVDT technologies
- Safety enclosures with interlocks can be installed to protect operators from violent specimen breaks

Horizon - Data analysis software

Tinius Olsen has built upon its long history of providing solutions to an enormous variety of testing problems to develop Horizon, a comprehensive software program that makes testing simple, precise and efficient.

Whether the test sample is metal, paper, composite, polymer, rubber, textile or a microcomponent, Tinius Olsen's Horizon software goes far beyond data collection and presentation. It will help automate operations, from R&D to the charting and analysis of QC testing.

Our Horizon software sets new standards of data analysis by adding a host of report writing and data manipulation capabilities that will make easy work of your materials testing programs. As with most features of Horizon, flexibility is key; reports can be customized by operators in any way they wish, as can all user screens, allowing operators to focus on features that are most important to them.

In addition to powerful reports, Horizon Materials Testing software is networkable and scalable so that operators and managers can operate equipment and review test results from multiple sources and locations. Horizon provides a library of standard, specific, and application-focused test routines that have been developed in close co-operation with customers around the world and to the standards they are using.

Among the many valuable features offered by Horizon are: a test routine library; simultaneous multiple machine control; test, output, method and result editors; and multilayered security. This software is designed for data acquisition, data analysis, and closed loop control of nearly all Tinius Olsen testing machines.

Horizon is rich with capabilities that improve productivity and enable you to build, access and use a modern, powerful materials testing database. It employs the latest Windows environments, running on touchscreen-enabled monitors, to create an intuitive user experience.

Built-in tutorials, online help, and help desk access provide additional user support.

Current Search: Notes <>								
Show Overviews	Compression - Force vs. Position	Simple Compression	27	Compression				
- ***	CSN EN 10002-1	CSN EN 10002-1	28	Tensile				
Aethod Filter	D1004 - Tear Resistance (Graves Tear) of Plastic Film and Sheeting	D1004	29	Tensile				
est Type: All	D1238 - Melt Index Test Procedure A	D1238	30	Melt Indexer Pro				
lethods Found:	D1238 - Melt Index Test Procedure B	D1238	31	Melt Indexer Pro				
OLibrary of Working Methods	D1938 Tear Propagation Resistance	D1938	32	Tensile				
	D412 Plastics Tensile - Strain From Position	D412	33	Tensile				
Export to File	D638 Plastics Tensile - Strain From Extensometer	D638	26	Tensile				
	D638 Plastics Tensile - Strain From Position	D638	34	Tensile				
Import from File	D695 Plastics Compression	D695	35	Compression				
	D790 Flexure - Strain From Position	D790	36	Flexure				
Convert from TSX File	D882 Tensile Properties of Thin Plastic Sheeting	D882	37	Tensile				
70/	E8 Metals Tensile - 0.2% Offset, Strain From Extensometer	E8	38	Tensile				
Edit Selected	E8 Metals Tensile - 0.2% OFS, 0.5% EUL, Strain From Extensometer	E8	39	Tensile				
Va	E8 Metals Tensile - Horizontal UTM	E8	40	Tensile				
M Delete Selected	E8;E646 Metals Tensile - 0.2% OFS, 0.5% EUL, n Value, Strain From Extensometer	E8;E646	41	Tensile				
	E9 Metals Compression	E9	42	Compression				
Show Where Used	EN ISO 13934-1;1999 Maximum Force & Elongation - Strip Method	EN ISO 13934-1	43	Tensile				
	EN ISO 13934-2;1999 Maximum Force - Grab Method	EN ISO 19394-2	44	Tensile				
Transfer to Library	ISO 1133 - Melt Index Test	ISO 1133	45	Melt Indexer Pro				
(a) items of Standard Matheda	ISO 527 Plastics Tensile - Strain From Extensometer	ISO 527	46	Tensile				
Cibrary of Standard Methods	ISO 527 Plastics Tensile - Strain From Position	ISO 527	47	Tensile				
A T C C C C C C C C C C C C C C C C C C	Tenrile Formur Decilion	Cimple Tensile	49	Tansila				

www.tiniusolsen.com

Horsham, PA, USA
Redhill, Surrey, UK
Noida, UP, India
Shanghai, PR China