

www.tiniusolsen.com

Horsham, PA, USA • Redhill, Surrey, UK • Noida, UP, India • Shanghai, PR China

Extensometer System

AREA OF APPLICATION

The extensometer models AE300 and AE500 are suitable for almost all samples with an initial gauge length from 10 mm. Their low clamping forces combined with high measurement accuracy makes them highly suitable even for small, notch sensitive test samples. The AE series can be connected to partly or fully automatic testing machines and used with all types of grips. The strain can be measured from the elastic range to fracture for almost all types of samples. When used in combination with the transverse models (as shown in the figure below), the AE extensometers are highly suitable for testing the deep-drawing properties of thin sheets.

DESIGN AND FUNCTION

Each one of the four measuring arms of the AE models have a measuring spring bonded with a full bridge strain gauge. The measuring springs of a right and left arm pair are connected in parallel to obtain an average value which is important if the sample deforms non-homogeneously. DC motors compensate the changes in the measuring spring signal initiated through the sample elongation by a ball-bearing gear ensuring that the measuring heads move according to the sample elongation and make the measuring heads follow the sample extension. The elongation is recorded by an opto-incremental measuring system. The measuring heads mounted on the

Two-sided measurement using 4 sensors

Accuracy to ISO 9513 Class 0.5 and ASTM E83 Class B1 capable, with very high resolution of up to 0.1µm, over the complete measuring range.

The round knife edges can be used around their entire circumference by simply rotating them. measuring arms show an exact parallel movement which is achieved through a zero-backlash linear guidance system. Using this principle avoids errors which occur when using measuring sensors with fixed points of rotation through angle changes and also errors due to tilting of the knife edges on the sample. The measuring heads and arms can be separated from the linear guidance system and can be changed easily and quickly.

CONTROL

The AE extensometers are controlled through our Horizon software via a serial interface (RS 232 or USB). All movements can be initiated at any time required. The measuring arms can be positioned parallelly within the available interval under computer control and thus can quickly be adjusted symmetrically to different sample lengths. The gauge length (Lo) can be set from 10 mm to the maximum possible measuring stroke. The travel is simply calculated from the maximum measurement range of either 300mm, 500mm or 800mm less the gauge length.

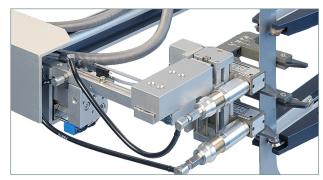
The AE models have an additional positioning range of 190 mm for the symmetrical adjustment of the initial gage length. With the arms open the required measurement position can be approached. Before the approach of the measuring position the digital measurement system is calibrated by reference marks. The opening and closing of the arms can be initiated at any time required.

Specification

TECHNICAL DATA	AE 300	AE 500	AE 800			
Accuracy class EN ISO 9513	0.5	0.5	0.5			
Accuracy class ASTM E83	B1	B1	B1			
Measurement principle		Opto - incremental				
Travel (minus gage length)	300 mm	500 mm	800mm			
Position travel	190 mm	190 mm	190 mm			
Gauge length	10 to 300 mm	10 to 500 mm	10 to 800 mm			
Indication error (rel.)*	0.5 %	0.5 %	0.5 %			
Indication error*	1.5 μm	1.5 μm	1.5 μm			
Error in linearity	0.005	0.005	0.005			
% Error in gauge length	0.5 %	0.5 %	0.5 %			
Resolution	1 or 0.1 μm	1 or 0.1 µm	1 or 0.1 µm			
Activating force	<0.01 N	<0.01 N	<0.01 N			
Clamping force **	0.25 N	0.25 N	0.25 N			
Operating temperature range	0 - 50 °C	0 - 50 °C	0 - 50 °C			
Weight	Approx. 26 kg	Approx. 31 kg	Approx. 38 kg			

* The larger of the values is admissible

** The clamping force can be adjusted by tension springs


SAMPLE DIMENSIONS

Maximum sample thickness	30 mm
Maximum sample width	50 mm
Maximum sample diameter	80 mm

Compatible with Tinius Olsen electromechanical and hydraulic tension and compression testing machines

Key features

- Two-sided measurement by means of 4 measuring sensors.
- Very high resolution of up to 0.1 µm over the complete measuring range.
- Very low clamping forces even allow testing of foils and thin wires
- The round knife edges can be utilized along their entire perimeter by rotating them.
- The gauge length position and value can be exactly set under computer control.

OPTIONS

1. Measurement in compression or deflection.

The AE models work in tension or compression, however, an optional module can be added that will allow the models to work in both directions.

2. Different lengths of measuring arms, and higher travel available.

Measuring arms of either an additional 75mm or 200mm length (additional to the standard length of 254mm) can be used ro follow the specimen movement, allowing the extensometer to be used at a greater distance from the specimen.

3. The installation of a fan / ventilator for use in dusty / dirty environments.

Any dirt or dust can play havoc with electronics and fine measuring systems, so putting the extensometer under a positive pressure prevents the ingress of dust and dirt. Close-up of follower arms on AE300 and transverse AE extensometers on specimen.

Software

 inius Olsen has built upon its long history of providing solutions to an enormous variety of testing problems

to develop Horizon, a comprehensive software program that makes testing simple, precise and efficient.

Whether the test sample is metal, paper, composite, polymer, rubber, textile or a

micro-component, Tinius Olsen's Horizon software goes far beyond data collection

and presentation. It will help automate operations, from R&D to the charting and analysis of QC testing.

Our Horizon software sets new

standards of data analysis by adding a host of report writing and data manipulation capabilities that will make easy work of your materials testing programs. As with most features of Horizon, flexibility is key; reports can be customized by operators in any way they wish, as can all user screens, allowing operators to focus on features that are most important to them.

In addition to powerful reports, Horizon Materials Testing software is networkable and scalable so that operators and managers can operate equipment and review test results from multiple sources and locations. Horizon provides a library of standard, specific, and application-focused test routines that have been developed in close co-operation with customers around the world and to the standards they are using.

Key Features

- Built-in set-up and calibration of AE extensometers
- Built-in signal conditioning and data collection
- Operation of follower arms on unique test button on test screen.
- Seamless integration into Horizon software.

Among the many valuable features offered by Horizon are: a test routine library; simultaneous multiple machine control; test, output, method and result editors; and multilayered security. This software is designed for data acquisition, data analysis, and closed loop control of nearly all Tinius Olsen testing machines.

Horizon is rich with capabilities that improve productivity and enable you to build, access and use a modern, powerful materials testing database. It employs the latest Windows environments, running on touchscreen-enabled monitors, to create an intuitive user experience.

Built-in tutorials,

online help, and help desk access provide additional user support.

"Horizon makes testing simple, precise and efficient"

Test & Recall Method	Editor Output Editor Result Editor	Help Desk					
aurent Search: Notes <>							
Options	Method	Notes	Method ID	Method Type			
U 👫 Show Overviews 🛛	Compression - Force vs. Position	Simple Compression	27	Compression			
lethod Filter	CSN EN 10002-1	CSN EN 10002-1	28	Tensile			
	D1004 - Tear Resistance (Graves Tear) of Plastic Film and Sheeting	D1004	29	Tensile			
st Type: All	D1238 - Melt Index Test Procedure A	D1238	30	Melt Indexer Pro			
ethods Found:	D1238 - Melt Index Test Procedure B	D1238	31	Melt Indexer Pro			
Library of Working Methods	D1938 Tear Propagation Resistance	D1938	32	Tensile			
Export to File	D412 Plastics Tensile - Strain From Position	D412	33	Tensile			
	D638 Plastics Tensile - Strain From Extensometer	D638	26	Tensile			
	D638 Plastics Tensile - Strain From Position	D638	34	Tensile			
Import from File	D695 Plastics Compression	D695	35	Compression			
	D790 Flexure - Strain From Position	D790	36	Flexure			
Convert from TSX File	D882 Tensile Properties of Thin Plastic Sheeting	D882	37	Tensile			
Edit Selected	E8 Metals Tensile - 0.2% Offset, Strain From Extensometer	E8	38	Tensile			
	E8 Metals Tensile - 0.2% OFS, 0.5% EUL, Strain From Extensometer	E8	39	Tensile			
(V)	E8 Metals Tensile - Horizontal UTM	E8	40	Tensile			
No Delete Selected	E8;E646 Metals Tensile - 0.2% OFS, 0.5% EUL, n Value, Strain From Extensometer	E8;E646	41	Tensile			
Show Where Used	E9 Metals Compression	E9	42	Compression			
	EN ISO 13934-1:1999 Maximum Force & Elongation - Strip Method	EN ISO 13934-1	43	Tensile			
Transfer to Library	EN ISO 13934-2;1999 Maximum Force - Grab Method	EN ISO 19394-2	44	Tensile			
	ISO 1133 - Melt Index Test	ISO 1133	45	Melt Indexer Pro			
Library of Standard Methods	ISO 527 Plastics Tensile - Strain From Extensometer	ISO 527	46	Tensile			
Clubrary or Standard Methods	ISO 527 Plastics Tensile - Strain From Position	ISO 527	47	Tensile			
Transfer Selected	Tensile - Force vs. Position	Simple Tensile	48	Tensile			
				6			

